A Fuzzy Formal Logic for Interval-valued Residuated Lattices

نویسندگان

  • Bart Van Gasse
  • Chris Cornelis
  • Glad Deschrijver
  • Etienne E. Kerre
چکیده

Fuzzy formal logics were introduced in order to handle graded truth values instead of only ‘true’ and ‘false’. A wide range of such logics were introduced successfully, like Monoidal T-norm based Logic, Basic Logic, Gödel Logic, Lukasiewicz Logic etc. However, in general, fuzzy set theory is not only concerned with vagueness, but also with uncertainty. A possible solution is to use intervals instead of real numbers as membership values. In this paper, we present an approach with triangle algebras, which are algebraic characterizations of interval-valued residuated lattices. The variety of these structures corresponds in a sound and complete way to a logic that we introduce, called Triangle Logic (in the same way as, e.g., BL-algebras and Basic Logic). We will show that this truthfunctional approach, along with the residuation principle, has some consequences that seem to obstruct an easy and proper interpretation for the semantics of Triangle Logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filters of residuated lattices and triangle algebras

An important concept in the theory of residuated lattices and other algebraic structures used for formal fuzzy logic, is that of a filter. Filters can be used, amongst others, to define congruence relations. Specific kinds of filters include Boolean filters and prime filters. In this paper, we define several different filters of residuated lattices and triangle algebras and examine their mutual...

متن کامل

Triangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices

In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, prov...

متن کامل

Triangle algebras: A formal logic approach to interval-valued residuated lattices

In this paper, we introduce triangle algebras: a variety of residuated lattices equipped with approximation operators, and with a third angular point u, different from 0 and 1. We show that these algebras serve as an equational representation of intervalvalued residuated lattices (IVRLs). Furthermore, we present Triangle Logic (TL), a system of many-valued logic capturing the tautologies of IVR...

متن کامل

Intuitionistic (T, S)-Fuzzy Filters on Residuated Lattices

The aim of this paper is further to develop the filter theory on residuated lattices. The concept of interval valued intuitionistic (T, S)-fuzzy filters on residuated lattices is introduced by linking the intuitionistic fuzzy set, t-norm, s-norm and filter theory of residuated lattices; The properties and equivalent characterizations of Interval valued intuitionistic (T, S)-fuzzy filters are in...

متن کامل

The pseudo-linear semantics of interval-valued fuzzy logics

Triangle algebras are equationally defined structures that are equivalent with certain residuated lattices on a set of intervals, which are called interval-valued residuated lattices (IVRLs). Triangle algebras have been used to construct Triangle Logic (TL), a formal fuzzy logic that is sound and complete w.r.t. the class of IVRLs. In this paper, we prove that the so-called pseudo-prelinear tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007